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Abstract: In this work, conduction-convection heat transfer through a straight fin, property distribution due to 
convection-diffusion, and conduction heat transfer through a slab with temperature dependent thermal 
conductivity are evaluated using Adomian decomposition method. The results are compared with numerical 
and exact solutions. It is shown that the numerical simulation has some limitations and may not always 
produce correct results. The Adomian decomposition method, however, follows the correct trend of the exact 
solution with applying only a few terms. 
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1 Introduction 
Generally, a physical problem in nature will be 
governed by nonlinear and stochastic equations. 
Therefore, the solutions of these governing 
equations, which will be obtained using 
linearization, perturbation, closure approximations, 
or discretization methods, may not be physically 
realistic. However, in Adomian’s decomposition 
method (ADM), the closed form solution of the non-
linear problems could be obtained without applying 
any non-realistic simplifications and/or 
approximations [1, 2]. Although this decomposition 
method is a n-term approximation, however, it does 
not change the physics of the original problem and it 
converges to the exact solution by increasing the 
number of the computed decomposition terms [1, 3]. 
     In this work, conduction-convection heat transfer 
in a fin, property distribution by means of 
convection-diffusion through a one-dimensional 
domain, and conduction heat transfer through a slab 
with temperature dependent thermal conductivity are 
determined, using the ADM. Also, the exact and 
numerical solutions, using finite volume method 
(FVM) are compared. 
 
2 Adomian Decomposition Method  
The Adomian’s equation in an operator form is [1, 
4]: 
 

,gNuRuLu =++                                                    (1)  

 
where, L  is the highest-order derivative, R  is the 
remainder of the linear operator, Nu  represents 
nonlinear terms, and g  is an inhomogeneous or 
forcing term. Solving for ,uL  one has: 
 

uNuRguL −−= .                                                 (2)  
 
     Leting 1−L  be an integral operator and 
applying 1−L  to both sides of Eq. (2), one gets: 
 

,111 uNLuRLgLu −−− −−+Φ=                                 (3)  
 
where, Φ satisfies 0=ΦL . Note, the inverse 
operator 1−L  is an indefinite integral. The constant of 
integrations can be found by utilizing 
boundary/initial conditions which will be absorbed 
intoΦ . The Adomian’s method assumes that the 
solution u can be expanded as an infinite series as:  
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     The non-linear operator uN  is represented by an 
infinite series ∑∞

=0n nA . Therefore, one can find the 

final solution as: 
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where, gLu 1
0

−+Φ= . The recursive form of 
u components can be written as: 
 

nnn ALuRLu 11
1

−−
+ −−= .                                            (6) 

 
     Polynomials nA  are generated for all kinds of 
non-linearity and depend on initial/boundary 
conditions (see Section 5). Consequently, all terms 
of the decomposition are identified and are 
calculable. Hence, the n-term partial sum 

∑ −

=
=
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n

i in uφ  will be the approximate solution. Of 

course, increasing the number of computed 
components results in higher accuracy, i.e., 
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3 Conduction-Convection Heat 

Transfer through a Fin 
We first consider the cooling of a cylindrical fin 
with uniform cross-sectional area ( A ) by means of 
convective heat transfer along its length. Figure 1 
shows the geometry and the boundary conditions of 
the problem. The base is at a temperature of 

C°100 ( BT ) and the end is insulated. The fin is 
exposed to an ambient temperature of C°20 . The 
governing equation of one-dimensional heat transfer 
for this situation is: 
 

,0)()( =−− ∞TThP
dx
dTkA

dx
d                                     (8) 

 
where, x is the distance along the fin, k  is the 
thermal conductivity of the material, A  is the cross 
section, h  is the convective heat transfer coefficient, 
P  is the perimeter, and ∞T  is the ambient 
temperature. The boundary conditions are: 
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where, l  is the length of the fin and is set to unity. 
Supposing kA  is constant, the exact solution is as 
follows [5]: 
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where, )/(2 kAhpn = . Using the variable change of 

∞−= TTT  and applying the ADM, i.e. Eq. (2), to Eq. 
(8) one can obtain: 
 

,TRTLx =                                                              (11)  
 
where, 22 / xL ∂∂=  is a second-order differential 
operator, )/(kahpR ==α is a constant, and  uN , and 
g  are zero for this problem. 
 
 
 
 
 
 
 
 
 
 
Figure 1: Geometry and boundary conditions of the 
first problem. 
 
     Having considered Eqs. (5), (6), and the inverse 
operator 1−

xL , a two-fold integration represented by 
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1 dxdxL
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x ∫∫=−  the decomposition 

components can be calculated as: 
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     Consequently, the solution is: 
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     By applying the boundary conditions (Eq. 9) the 
constants in Eq. (13) can be obtained and the 
solution becomes: 
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     In our numerical simulation using FVM, the 
central difference approach is used with a uniform 
grid and the length (which is considered to be 

m0.1 ) is divided into five control volumes, so that 
mx 2.0=δ  [6]. Figure 2 shows the finite volume, 

exact, and 5-, 6-, 7-, and 8-terms of Adomian 
solutions. It can be observed that, the Adomian 
decomposition method has higher accuracy in 
comparison with the numerical solution. Also, it 
converges to the analytical solution as the number of 
its terms increases. 
 
4 Property Distribution Due to 

Convection-Diffusion 
In this section, the distribution of a property φ  by 
means of convection and diffusion through the one-
dimensional domain is considered, as our second 
problem (figure 3 shows the problem schematically). 
In the absence of sources, the steady state governing 
equation is: 
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Figure 2: Exact, numerical, and Adomian solutions 
of temperature distribution in a fin. 

where, ρ ,  u , and Γ  are density, velocity, and  
diffusion coefficient, respectively, and are assumed 
to be constant. The boundary conditions are: 
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     The exact solution of this problem is: 
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     Applying the Adomian decomposition method to 
Eq. (15), one can obtain: 
 

,0=− φφ RLx                                                          (18) 
 
where, 22 / xL ∂∂=  is a second-order differential 
operator, )/( xR ∂∂= β , uN , and g  are zero, and 

Γ= /uρβ (a constant).  
 
 
 
            
 
 
Figure 3: Distribution of a property,φ , by means of 
convection and diffusion through the one-
dimensional domain. 
 
     Similarly, as in Section 2, the decomposition 
components are as follows: 
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     Consequently, the solution is: 
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     Applying the boundary conditions (Eq. 16), the 
constants in Eq. (20) are obtained and the solution 
becomes: 
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     In FVM simulation, central difference approach 
is used with a uniform grid and the length, which is 
considered to be m0.1 , is divided into five control 
volumes, so that mx 2.0=δ  [6]. Also, ρ  and Γ  are 
assumed to be 3/0.1 mkg  and smkg //1.0 . However, 
two different cases are considered for the velocity, 
i.e., for case (i) smu /1.0=  and for case (ii) 

./5.2 smu =  Figures 4 and 5 show the exact, 
numerical and Adomian decomposition solutions for 
the two cases.  
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Figure 4: Exact, numerical, and Adomian solutions 
of property distribution due to convection-diffusion 
for case (i). 
      
It is observed that for case (i), only three-terms of 
the Adomian’s decomposition shows a very high 
accuracy. However, for case (ii), the numerical 
solution produces a result that appears to oscillate 
about the exact solution and does not follow the 
exact solution trend. Although the truncation error 
of central differencing scheme is second order, it 
may not produce approximately the correct solution 
of the problem (at least within the approximation 
used). The Adomian’s decomposition method, 
however, follows the correct trend of the exact 
solution even applying 5-terms. Of course, it 
converges to the analytical solution by increasing 
the number of computed components. 
 

5 Heat Transfer through a Slab with 
Temperature Dependent Thermal 
Conductivity 

Conduction heat transfer through a slab in 
lx ≤≤0 with heat generation at a constant rate of 

0g is investigated in this section. The thermal 
conductivity depends on temperature in the form of  

).1()( 0 TkTk β+=  The governing equation is as 
follows: 
 

0)1( 00 =+



 + g

dx
dTTk

dx
d β ,                                 (22) 

 
where, 0k  is the thermal conductivity of the slab at 
the ambient temperature and β  is the parameter 
describing the variation of the thermal conductivity. 
The boundary conditions are: 
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Figure 5: Exact, Finite volume, and Adomian 
solutions of property distribution due to convection-
diffusion for case (ii). 
 
     The exact solution to Eq. (22) is: 
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Let, 00 / kg=α , then Eq. (22) reduces to: 
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     Applying the Adomian decomposition method to 
Eq. (25), one finds: 
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,BNANTLx ββα −−−=                                     (26) 
 
where 22 / xL ∂∂=  is a second-order differential 
operator. The non-linear terms in Eq. (26) can be 
defined as: 
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which are introduced as 
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also,  
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     Applying the inverse operator, 1−

xL  to both sides 
of Eq. (26), one obtains:  

BNLANLTT xx
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where, 
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xcxcT α++= . The other terms can be 

obtained using the following recursive form: 
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     Applying the boundary condition (Eq. 23) at 

0=x and letting ,)0( CxT ==  one can obtain from 
Eq. (31) that: 
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     Consequently, the final solution in terms of α  
and β  is: 
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where, C is yet to be obtained using Newton-
Raphson method for given values of 10=α and 

.5.0=β  
     Figure 6 shows the exact and the Adomian 
decomposition solutions. Here, it is worth to 
mention that, as the terms of Adomian’s series 
increase, the solution converges to the exact one. 
 
6 Conclusions 
The Adomian decomposition method is applied to 
attain the analytical solution to conduction-
convection heat transfer through a straight fin, 
property distribution due to convection-diffusion, 
and conduction heat transfer through a slab with 
temperature dependent thermal conductivity. Also, 
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the problems are solved numerically applying finite 
volume method and the results are compared with 
the exact solutions. It is observed that, the ADM is a 
reliable method which converges to the exact 
solution, unlike the numerical results. 
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Figure 6: The exact and the Adomian solutions of 
heat transfer through a slab. 
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